Using with ML Frameworks
Foundry integrates with popular ML frameworks.
PyTorch
Load as PyTorch Dataset
# Get PyTorch-compatible dataset
torch_dataset = dataset.get_as_torch(split='train')
# Use with DataLoader
from torch.utils.data import DataLoader
loader = DataLoader(torch_dataset, batch_size=32, shuffle=True)
for batch in loader:
inputs, targets = batch
# Train your modelFull Training Example
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from foundry import Foundry
# Load data
f = Foundry()
ds = f.search("band gap", limit=1).iloc[0].FoundryDataset
train_dataset = ds.get_as_torch(split='train')
test_dataset = ds.get_as_torch(split='test')
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32)
# Define model
model = nn.Sequential(
nn.Linear(input_size, 64),
nn.ReLU(),
nn.Linear(64, 1)
)
# Train
optimizer = torch.optim.Adam(model.parameters())
criterion = nn.MSELoss()
for epoch in range(10):
for inputs, targets in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()TensorFlow
Load as tf.data.Dataset
Full Training Example
Scikit-learn
Use the dictionary format:
Generic Python
For any framework, use the dictionary format:
Tips
Check Data Shape
Handle Missing Values
Feature Engineering
Last updated
Was this helpful?